Use NumPy's argmax()
function to get the index of the maximum value in an array.
import numpy as np
x = np.array([1, 8, 2.5, 4])
ind = x.argmax()
print('1D array', x)
print('Max value at index', ind)
1D array [1 8 2.5 4]
Max value at index 1
If there are multiple occurrences of the max value, then the first index is returned.
y = np.array([1, 8, 2.5, 4, 8]) # index of first occurrence is returned
ind = y.argmax()
print('1D array', y)
print('Max value at index', ind)
1D array [1 8 2.5 4 8]
Max value at index 1
Use the unravel_index()
function to get the row and column indices of the max value in a two-dimensional array.
z = np.array([[1, 2.4, 7, 5], [0.2, 8, 7, 4.9], [5, 3.1, 4, 1], [7, 2, 4, 3]])
ind = np.unravel_index(z.argmax(), z.shape)
print('2D array\n', z)
print('Max value at index', ind)
2D array
[[1 2.4 7 5 ]
[0.2 8 7 4.9]
[5 3.1 4 1 ]
[7 2 4 3 ]]
Max value at index (1, 1)
Gavin Wiggins © 2025.
Made on a Mac with Genja. Hosted on GitHub Pages.