A

Realm Mobile Database

Knoxville CocoaHeads
April 2017 by Gavin Wiggins

What is the Realm Mobile Database?

- Free open-source mobile database with support
for Java, Objective-C, Javascript, Swift, and
Xamarin

-+ Data is persisted to disk as objects (not tables)
using a zero-copy design

+ Realm objects are full-fledged classes
- Core is written in C++
- Not an ORM database, not based on SQLite

- Support for complex queries and data encryption

Vertica

Neo4J
SimpleDB
o Drizzle
Introduction of New
. Riak
Database Technol
a a ase eC no Ogles Hypertable
MariaDB
1994-2014 “Mon
— MongoDB
RethinkDB
Arranged by date of first public release (source: Wikipedia) ;O; rlentDlB
gead-+ closed-source « open-source FlockDB
RavenDB
Clustrix
Membase
Translattice
NimbusDB/NuoDB
Citrusleaf/Aerospike
Server Databases DynamoDB
Hadoop Datomic
MemSQL
MySQL CouchDB HVP‘?rroDkeu"DB
, GenieDB
PostgreSQL MarkLogic Netezza Greenplum FoundationDB
Apollo
Cayley
_ S & $ & & E 9 S PP L o
$ 9 $ $ F v F S Y Yy NS
Mobile Databases SQLite Realm

Source: Realm GitHub 2015

Who is using Realm?

amazon Google hipmunk starBucks ebay AREl
NETFLIX (nted HYALT HABAE GoPro F

FOREAL N 20 [Y) AVIS %oropbox
Al wamartsc Alg® MIKKEI TEEE LINE
INTUIT DBudweier o~ MZynga =SoftBank SIEMENS

SONY e Zl pcar AstraZeneca§ m imgur

Source: Marin Todorov

Performance

I nserts Insert 200k records, in a single transaction (higher is better)

200K 192K

150K

100K

records inserted per second

50K
0K
SQLite Realm | FMDB Core Data YapDatabase Couchbase Lite . :
, Source: Realm GitHub 2015
SQLite libraries
Qu eries Iterate over all records matching a query (higher is better) Counts Get count of records matching a query on a database of 200k records (higher is better)
50 50
40.2

38 38
o o
= o=
Q Q
O @
w1 w

@ 25 @ 25
K g
T T
=2 =2
o o

13 13

0.14 0.11 0.691 0.111
0 0
Realm SQLite FMDB Core Data Couchbase Lite YapDatabase | Realm SQLite FMDB Core Data Couchbase Lite YapDatabase |

[I
SQLite libraries SQLite libraries

Other products - Realm Browser

- A standalone Mac app to read and edit realm database files
- Easily view, filter, and debug contents of the realm file in an app

- Available on the Mac App Store

B3 N a0 B <10 R
0O default
¢ "‘ Q Search
CLASSES name height birthdate vaccinated owner
String Float Date Boolean <Owner>
Dog D . . .
o @ Bilbo Fleabaggins 50.000 |Sep 8, 2009, 8:26:57 AM (Tim)
Deputy Dawg 114.000 Jan 26, 2010, 6:58:03 PM (JP)
Hairy Pawter 114.000 May 13, 2005, 1:36:30 AM v (Arwa)
Jabba the Mutt 98.000 May 16, 2009, 12:41:32 PM - (Joe)
McGruff the Crime Dog 86.000 Sep 14, 2005, 9:38:56 PM v (Alex)
Nerf Herder 44.000 Feb 23, 2001, 5:34:55 AM - (Michael)
Defense Secretary Waggles 63.000 Jun 8, 2006, 6:03:41 AM (Adam)
Salacious B. Crumb 101.000 Jan 18, 2010, 7:51:19 PM (Samuel)
Earl Yippington Il 44.000 Aug 26, 2001, 9:37:30 PM B (Kristen)
Pickles McPorkchop 71.000 Jan 2, 2008, 6:44:51 PM v (Emily)
Sir Yaps-a-lot 128.000 Jun 18, 2004, 11:26:05 PM i (Katsumi)
Rudy Loosebooty 77.000 Oct 9, 2002, 6:09:45 AM v (Morgan)
Madame Barklouder 78.000 Apr 4, 2009, 9:01:06 PM B (Bjarne)

Source: App Store

Other products - Realm Mobile Platform

Realtime data sync and event handling - Combines the Realm Object Server

between server and devices with the Realm Mobile Database
NEW
Realm » ® w
Object @ .? n *ry7
Server Event RMP Auth Access w N .
Framework Dashboard System Control <+— Integrations/

Data
—> Connectors

Object Store

AW

|5

& Encryption Layer

/ Real time Sync
Realm) [C] l'l

Mobile
Database

Source: Realm website

Installation options for Realm Mobile Database

Dynamic framework CocoaPods Carthage

Use import RealmSwift at the top of your Swift files.

See the Realm documentation at https://realm.io/docs/swift/latest/
for step-by-step instructions.

https://realm.io/docs/swift/latest/

Define Realm models like regular Swift classes

import RealmSwift
// Use them like regular Swift objects

class Dog: Object { let myDog = Dog()
dynamic var name = "" myDog.name = "Rex"
dynamic var age = 0 myDog.age = 1
} print("name of dog: \(myDog.name)")

T ————————=—=—=—————————————

class Person: Object {
dynamic var name = ""
dynamic var picture: NSData? = nil // optionals supported
let dogs = List<Dog>()

}

The “dynamic” keyword allows Realm to map
properties to underlying C++ data structure.

To-One Relationships

For many-to-one or one-to-one relationships, simply declare
a property with the type of your object subclass.

class Dog: Object {
// ... Other property declarations
dynamic var owner: Person? // to-one relationships must be optional

let jim = Person()
let rex = Dog()
rex.owner = jim

B

To-Many Relationships

You can define a to-many relationship using List properties.

class Person: Object {
// ... Other property declarations
let dogs = List<Dog>()

let someDogs = realm.objects(Dog.self).filter('"'name contains 'Fido'")
jim.dogs.append(objectsIn: someDogs)
jim.dogs.append(rex) // list properties preserve their order

Inverse Relationships

Links to other objects are unidirectional.

With LinkingObjects properties, you can obtain all objects
that link to a given object from a specific property.

class Dog: Object {
dynamic var name =
dynamic var age = 0
let owners = LinkingObjects(fromType: Person.self, property: "dogs")

Realm property types

Type Non-optional Optional
Bool dynamic var value = false let value = RealmOptional<Bool>()
Int dynamic var value = 0 let value = RealmOptional<Int>()
Float dynamic var value: Float = 0.0 let value = RealmOptional<Float>()
Double dynamic var value: Double = 0.0 let value = RealmOptional<Double>()
String dynamic var value = "" dynamic var value: String? = nil
Data dynamic var value = NSData() dynamic var value: NSData? = nil
Date dynamic var value = NSDate() dynamic var value: NSDate? = nil
Object n/a dynamic var value: Class?
List let value = List<Class>() n/a

let value = LinkingObjects(fromType:

Class.self, property: "property") n/a

LinkingODbjects

Adding objects to a Realm

// Create a Person object
let author = Person()
author.name = "David Foster Wallace"

// Get the default Realm
let realm = try! Realm()

// Add to the Realm inside a transaction
try! realm.write {
realm.add(author)

}

Writes will block the thread they are made on.

Reads are not blocked while a write is in progress.

Updating typed objects and objects with primary key

Typed updates Creating/updating objects with primary keys
// Update an object with a transaction // Creating a book with the same primary
try! realm.write { // key as a previously saved book
author.name = "Thomas Pynchon" let cheeseBook = Book()
} cheeseBook.title "Cheese recipes”

cheeseBook.price = 9000

cheeseBook.1d = 1

// Updating book with id = 1
try! realm.write {
realm.add(cheeseBook, update: true)

}

T —————————=—=——————

Deleting objects in a Realm database

// let cheeseBook = ... Book stored in Realm

// Delete an object with a transaction
try! realm.write {

realm.delete(cheeseBook)
}

// Delete all objects from the realm
try! realm.write {

realm.deleteAll()
}

Queries

Queries return a Results instance which contains a collection of Objects
Results of a query are not copies of your data
Execution of query is deferred until results are used

Results of a query are kept up-to-date with changes in the Realm

let dogs realm.objects(Dog.self) // retrieves all Dogs from the default Realm

Filtering

Use the filter method to query for specific objects by passing

an NSPredicate instance
predicate string

predicate format string

// Query using a predicate string
var tanDogs = realm.objects(Dog.self).filter("color = "tan' AND name BEGINSWITH 'B'")

// Query using an NSPredicate

let predicate = NSPredicate(format: "color = %@ AND name BEGINSWITH %@", "tan'", "B")
tanDogs = realm.objects(Dog.self).filter(predicate)

Sorting

Sort criteria and order can be based on
a key path
a property
one or more sort descriptors
// Sort tan dogs with names starting with "B" by name

let sortedDogs = realm.objects(Dog.self).filter('"color = '"tan' AND name BEGINSWITH
'B'").sorted(byKeyPath: "name')

Other features and limitations

Other features

- Configure single or multiple Realm databases for a single app
- Threading

-+ Add Realm objects from JSON data

- Register for notifications when a Realm is modified

- Migrations

- Encrypting the database file on disk with AES-256 + SHA2

Limitations
* NSData and String properties limited to 16 MB In size
- No auto-incrementing properties

Resources for learning more about Realm

- Realm.io - official website and documentation

+ Raywenderlich.com - beginner and intermediate video tutorials
- github.com/realm

- StackOverflow - use the [realm] tag to filter search

- A six part series by Marin Todorov titled Realm is an Object-Centric,
Present-Day Database for Mobile Applications

https://realm.io/news/realm-object-centric-present-day-database-mobile-applications/
https://realm.io/news/realm-object-centric-present-day-database-mobile-applications/
https://realm.io/news/realm-object-centric-present-day-database-mobile-applications/

