
Realm Mobile Database
Knoxville CocoaHeads

April 2017 by Gavin Wiggins

What is the Realm Mobile Database?

• Free open-source mobile database with support
for Java, Objective-C, Javascript, Swift, and
Xamarin

• Data is persisted to disk as objects (not tables)
using a zero-copy design

• Realm objects are full-fledged classes
• Core is written in C++
• Not an ORM database, not based on SQLite
• Support for complex queries and data encryption

2

3

Source: Realm GitHub 2015

Who is using Realm? 4

Source: Marin Todorov

Performance 5

Source: Realm GitHub 2015

Other products - Realm Browser
• A standalone Mac app to read and edit realm database files
• Easily view, filter, and debug contents of the realm file in an app
• Available on the Mac App Store

6

Source: App Store

Other products - Realm Mobile Platform 7

• Realtime data sync and event handling
between server and devices

• Combines the Realm Object Server
with the Realm Mobile Database

Source: Realm website

Installation options for Realm Mobile Database

Use import RealmSwift at the top of your Swift files.

See the Realm documentation at https://realm.io/docs/swift/latest/
for step-by-step instructions.

8

Dynamic framework CocoaPods Carthage

https://realm.io/docs/swift/latest/

Define Realm models like regular Swift classes 9

import RealmSwift

class Dog: Object {
 dynamic var name = ""
 dynamic var age = 0
}

class Person: Object {
 dynamic var name = ""
 dynamic var picture: NSData? = nil // optionals supported
 let dogs = List<Dog>()
}

The “dynamic” keyword allows Realm to map
properties to underlying C++ data structure.

// Use them like regular Swift objects
let myDog = Dog()
myDog.name = "Rex"
myDog.age = 1
print("name of dog: \(myDog.name)")

To-One Relationships 10

class Dog: Object {
 // ... other property declarations
 dynamic var owner: Person? // to-one relationships must be optional
}

let jim = Person()
let rex = Dog()
rex.owner = jim

For many-to-one or one-to-one relationships, simply declare
a property with the type of your Object subclass.

To-Many Relationships 11

You can define a to-many relationship using List properties.

class Person: Object {
 // ... other property declarations
 let dogs = List<Dog>()
}

let someDogs = realm.objects(Dog.self).filter("name contains 'Fido'")
jim.dogs.append(objectsIn: someDogs)
jim.dogs.append(rex) // list properties preserve their order

Inverse Relationships 12

class Dog: Object {
 dynamic var name = ""
 dynamic var age = 0
 let owners = LinkingObjects(fromType: Person.self, property: "dogs")
}

Links to other objects are unidirectional.

With LinkingObjects properties, you can obtain all objects
that link to a given object from a specific property.

Realm property types 13

Type Non-optional Optional

Bool dynamic var value = false let value = RealmOptional<Bool>()

Int dynamic var value = 0 let value = RealmOptional<Int>()

Float dynamic var value: Float = 0.0 let value = RealmOptional<Float>()

Double dynamic var value: Double = 0.0 let value = RealmOptional<Double>()

String dynamic var value = "" dynamic var value: String? = nil

Data dynamic var value = NSData() dynamic var value: NSData? = nil

Date dynamic var value = NSDate() dynamic var value: NSDate? = nil

Object n/a dynamic var value: Class?

List let value = List<Class>() n/a

LinkingObjects let value = LinkingObjects(fromType:
Class.self, property: "property") n/a

Adding objects to a Realm 14

// Create a Person object
let author = Person()
author.name = "David Foster Wallace"

// Get the default Realm
let realm = try! Realm()

// Add to the Realm inside a transaction
try! realm.write {
 realm.add(author)
}

Writes will block the thread they are made on.

Reads are not blocked while a write is in progress.

Updating typed objects and objects with primary key 15

// Update an object with a transaction
try! realm.write {
 author.name = "Thomas Pynchon"
}

// Creating a book with the same primary
// key as a previously saved book
let cheeseBook = Book()
cheeseBook.title = "Cheese recipes"
cheeseBook.price = 9000
cheeseBook.id = 1

// Updating book with id = 1
try! realm.write {
 realm.add(cheeseBook, update: true)
}

Typed updates Creating/updating objects with primary keys

Deleting objects in a Realm database 16

// let cheeseBook = ... Book stored in Realm

// Delete an object with a transaction
try! realm.write {
 realm.delete(cheeseBook)
}

// Delete all objects from the realm
try! realm.write {
 realm.deleteAll()
}

Queries

• Queries return a Results instance which contains a collection of Objects
• Results of a query are not copies of your data
• Execution of query is deferred until results are used
• Results of a query are kept up-to-date with changes in the Realm

17

let dogs = realm.objects(Dog.self) // retrieves all Dogs from the default Realm

Filtering

Use the filter method to query for specific objects by passing

• an NSPredicate instance

• predicate string

• predicate format string

18

// Query using a predicate string
var tanDogs = realm.objects(Dog.self).filter("color = 'tan' AND name BEGINSWITH 'B'")

// Query using an NSPredicate
let predicate = NSPredicate(format: "color = %@ AND name BEGINSWITH %@", "tan", "B")
tanDogs = realm.objects(Dog.self).filter(predicate)

Sorting 19

// Sort tan dogs with names starting with "B" by name
let sortedDogs = realm.objects(Dog.self).filter("color = 'tan' AND name BEGINSWITH
'B'").sorted(byKeyPath: "name")

Sort criteria and order can be based on

• a key path

• a property

• one or more sort descriptors

Other features and limitations

Other features
• Configure single or multiple Realm databases for a single app
• Threading
• Add Realm objects from JSON data
• Register for notifications when a Realm is modified
• Migrations
• Encrypting the database file on disk with AES-256 + SHA2

Limitations
• NSData and String properties limited to 16 MB in size
• No auto-incrementing properties

20

Demo 21

Resources for learning more about Realm

• Realm.io - official website and documentation

• Raywenderlich.com - beginner and intermediate video tutorials

• github.com/realm

• StackOverflow - use the [realm] tag to filter search

• A six part series by Marin Todorov titled Realm is an Object-Centric,
Present-Day Database for Mobile Applications

22

https://realm.io/news/realm-object-centric-present-day-database-mobile-applications/
https://realm.io/news/realm-object-centric-present-day-database-mobile-applications/
https://realm.io/news/realm-object-centric-present-day-database-mobile-applications/

